情報・技術教育シンポジウム ~高等学校の実践事例など

東京都立国立(くにたち) 高等学校 指導教諭 小原 格

都や国の委員(今まで)

- ・都研修センター認定講師
- 学習指導要領(情報科)
- 中教審情報WG委員
- •情報ⅠⅡ研修資料
- 指導と評価の一体化
- ・ 学校DX戦略アドバイザー

趣味•特技•性格

- 写真 · 旅行 · 園芸
- 音楽
- のめり込む・断れない
- ・ 何か「新しい挑戦」を1つ

小原格(おはらつとむ)

東京都の高校教員(1993~)数学(~2003)

情報(2003~)

教諭 → 主幹教諭 → 指導教諭

- ・大学の非常勤講師
- ・ 都や国の委員・講師など
- 学会•執筆•講演活動
- 趣味 特技 性格
- •「楽しむ」

大学の非常勤

- 青山学院大学
- 電気通信大学
- (元)首都大学東京

学会•執筆•講演

- 都高情研
- 全高情研
- 情報処理学会
- 情報科教育学会
- 情報科教科書
- 情報科教育法
- 各道府県研究会
- 研修センターなど

夏 東京都立**国** 立高等学校 情報科

本日の内容

- 1.情報科の変遷
- 2. 情報 I 授業紹介
 - あえてたくさんの内容を入れました。
 - IO分程度で簡単に話します。あとでごゆっくりとご覧ください。

| 情報科の変遷

情報科の変遷

- VerI.0 (2003~2012)
 - -「情報A」「情報B」「情報C」選択必履修
 - •「実習を重視」「Office系アプリ」
 - •「情報活用の実践力」
- Ver2.0 (2013~2021)
 - 「社会と情報」「情報の科学」選択必履修
 - •「情報モラル」など,社会的な要請
 - •「情報社会に参画する態度」

情報科の変遷

- Ver3.0 (2022~)
 - 「情報 I」共通履修,「情報 II」選択履修
 - 「問題解決」「情報デザイン」「プログラミング」「データの活用」
 - •「情報の科学的な理解」
- Ver3.1 (2025~)
 - 「共通テスト」への導入 → 「入試科目」へ
 - 「入試対応」。○○

高校では今, ここがホットな、 話題の1つ

2 情報 I 授業紹介

発達段階を意識

- 小学校 → 「慣れ親しむ」
 - 「判断」は大人が中心,楽しく嫌いにならないように
- 中学校 →「主体的·積極的」
 - 「ルールを遵守」, 典型的なケースへの対応が中心
- 高等学校 →「<mark>実践的</mark>·主体的」
 - 「科学的な理解」を前面 → 「なぜ? どうして?」
 - 根拠を示し,実社会の未知なる問題へ応用を

第2章 共通教科情報科の各科目

第1節 情報 I

目標

「情報I」の目標は、次のように示されている。

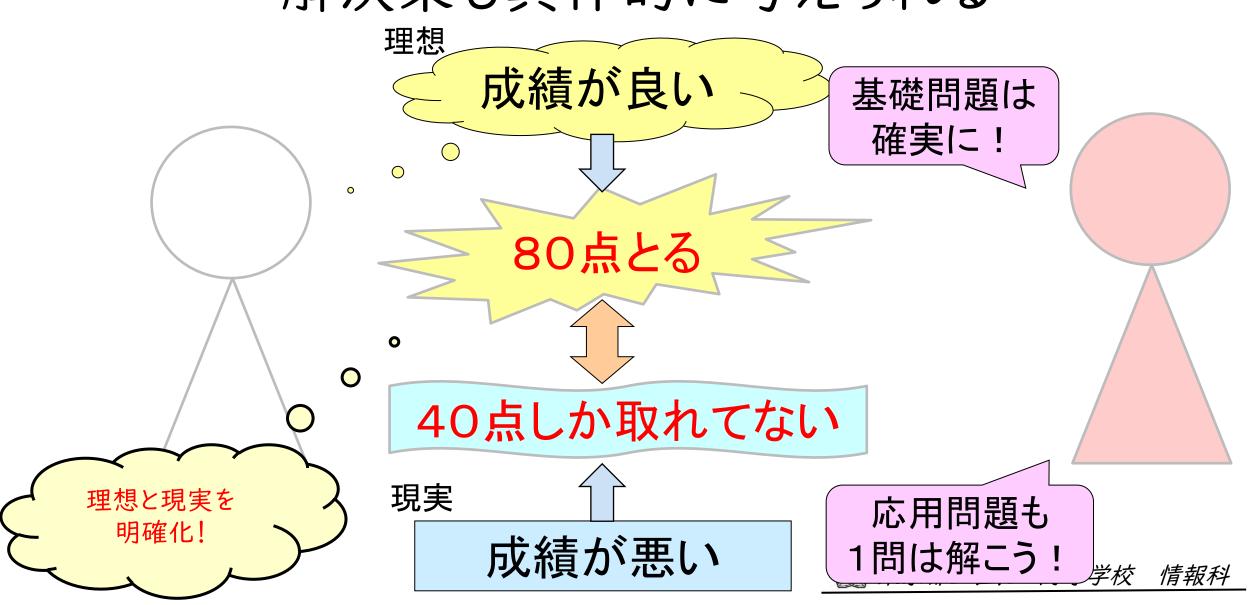
情報に関する科学的な見方・考え方を働かせ、情報技術を活用して問題の発見・解 決を行う学習活動を通して、問題の発見・解決に向けて情報と情報技術を適切かつ効 果的に活用し、情報社会に主体的に参画するための資質・能力を次のとおり育成する ことを目指す。

- (1) 効果的なコミュニケーションの実現、コンピュータやデータの活用について理解 を深め技能を習得するとともに、情報社会と人との関わりについて理解を深める ようにする。
- (2) 様々な事象を情報とその結び付きとして捉え、問題の発見・解決に向けて情報と 情報技術を適切かつ効果的に活用する力を養う。
- (3) 情報と情報技術を適切に活用するとともに、情報社会に主体的に参画する態度を 養う。

情報 I・Iの概要

- 問題解決と情報社会,情報技術
 - 問題解決の流れを知り,既習事項を振り返り,次節への導入を図る
- コミュニケーション・情報デザイン、情報コンテンツ
 - 問題解決の為の情報デザインやコンテンツを作成する
- プログラミング・モデル化とシミュレーション、情報システム
 - 問題解決の為のプログラムやシステムなどを考え作成する
- 情報通信ネットワーク・データの活用, データサイエンス
 - 問題解決の為のデータ活用やデータサイエンス等について学習する

(1)情報社会の問題解決


	教科書ページ	内 容	知∙技	思•判•表	主
1	2,4-6	オリエンテーション:情報とは・情報モラル			0
2	60-61,88	コンピュータと情報処理	•		
3	8–9	情報社会の問題解決1(問題解決とは)			•
4	8–9	情報社会の問題解決2(発想法:フレームワークとブレスト)		0	
5	8-9	情報社会の問題解決3(未来の情報機器やシステムの開発)		•	
6	8–9	情報社会の問題解決4(分析と解決策の立案:情報モラル)		•	
7	8–9	情報社会の問題解決5(解決策の決定:座標軸と図解)	•		•
8	8-9	情報社会の問題解決6(解決策の決定:表計算とマトリクス図)	0		
9	8-9	情報社会の問題解決7(人間の生活や社会全体への影響)		0	
課	資料9-10,24-31	レポート課題「著作権侵害・個人情報」	•		•

(1)「情報社会と問題解決」

- ・ 中学校の復習と高校との橋渡し
 - 「問題」の定義
 - 「考え方」の指導
 - チームビルディング(コミュニケーショントレーニング)
 - アプリケーションの指導は「目的」を持って
- 情報は「一定の形がなく」「見えない」
 - → 何らかの形で表現し、「見える化」する必要性
- 「なぜ?」「どうして?」を大切に
 - → 単に「暗記」だけではなく,しくみなどへ誘うような仕掛け

授業スライド

「理想」と「現実」が具体的であるほど 解決策も具体的に考えられる

アイデアを広げるための方法

トレーニング0 フレームワーク

あえて枠組みなどの「切り口」を考え、その中で思考する。 例1)「封筒」の使い道を考える。(本来的でなくても良い)

- 本来的な使い方は・・・
 - 郵便用、書類を保護(汚さない)、一つにまとめ整理する、・・・
- 大きさ、形に着目すると・・・
 - 鍋敷として、定規として、縁をカッターとして、・・
- 材質に注目すると・・・
 - ノート代わりに、小さく切ってメモに、折り紙、ティッシュ代わり、·・・
- 複数集めて・・・
 - 枕として、掛け布団、・・・

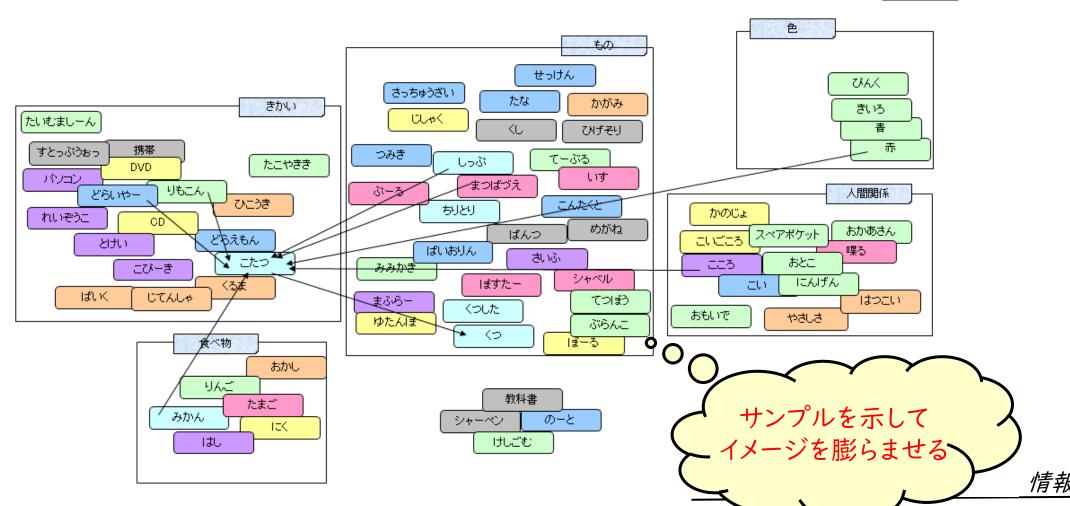
演習2「未来の情報機器」

- 次にある「モノ」の「機能」を「融合」させると、どのようなものができるだろうか。自由に想像してみよう。
- 機能の一部でも良い。また、形状等でも良い。
- ブレーンストーミングやフレームワークを思い出して考えてみよう。

- ① 電子レンジ + インターネット
- ② 掃除機 + カメラ
- ③ 洗濯機 + エアコン
- ④ 携帯電話 + 動画 + 教室

授業スライド

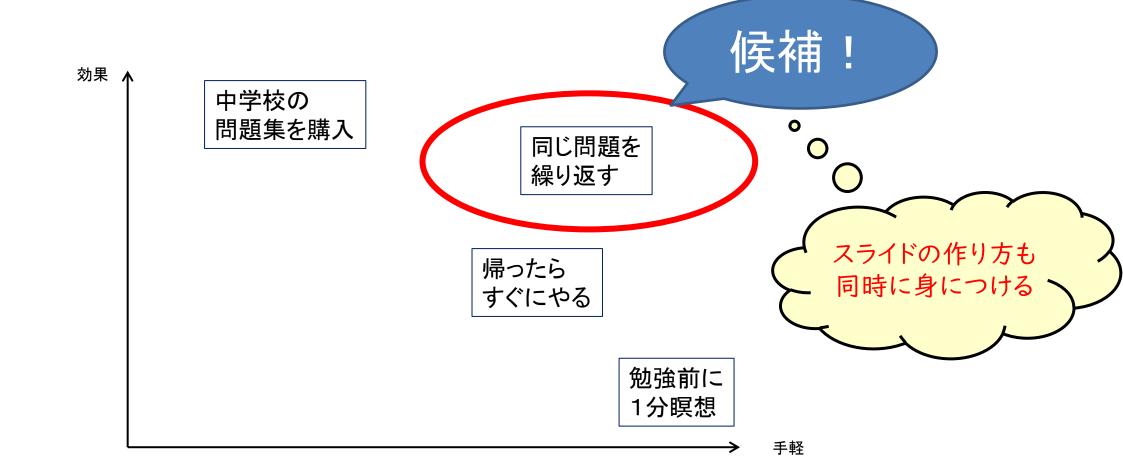
アイデア整理の例 (未来の「情報機器」の開発)


製品名: コタシューズ

少し大きめな靴に、こたつのような暖房があり、その日の体調や気温によって適温に保たれる。

遠赤外線で「ねんざ」等の回復機能もあり、また、蒸れないようにドライヤーの機能もついていて、ミカンのように汚れを落とし肌にもやさしい。

ちっそ 色 びんく きいろ 人間関係 かのじょ スペアポケット おかあさん おとこ こころ ほんげん こい はつこい おもいで やさしさ サンプルを示して イメージを膨らませる**>** 情報科


すいじょうき

演習3 意思決定

• 演習2で配置した解決策から、一番右上にあるものを解決 策の候補として決定する。

解決策の決定

- マトリックス図
 - 複数の異なった視点をもとに、重要度を表で表す
 - 表計算ソフトと相性が良い → 数値化できるデータの評価に有効

例) ◎:4点、○:3点、△:1点、×:0点で数値化

	効果	所要 時間	労力	コスト
解決策A	0	×	0	0
解決策B	0	×	Δ	Δ
解決策C	Δ	Δ	×	Δ
解決策D	Δ	0	0	Δ
解決策E	Δ	×	×	×

	効果	所要 時間	労力	コスト
解決策A	4	0	3	4
解決策B	3	0	1	1
解決策C	1	1	0	1
解決策D	1	4	4	1
解決策E	1	0	0	0

									7	
	Α	В	С	D	Е	F	G			-
1	コミュニケー	ーション手段の	カ利用時間((平均)				グラフ作成	と同時に	_
2								情報社会		
3								IF TX T工 公	V M M M M	1
4	コミュニケー	ーション手段を	を使っている	人の割合				ς .		
5		携帯通話	固定通話	ネット通話	ソーシャル	メール				
6	10代	1.8	0.7	5	60.4	26.3				
7	20代	16.4	0.9	8.6	66.2	44.2				
8	30代	17.6	2.3	7.1	45.4	52.7				
9	40代	17.8	2.8	3.7	34.9	54.5				
10	50代	21.7	5.8	3.3	27.1	54.5				
11	60代	17.1	6.4	1.2	9.5	35.4				
12										
13	出典:総務	省 情報通信	白書(H30)	より 抜粋						
14	http://www	v.soumu.go.j	o/johotsusin	tokei/white	paper/ja/h3	0/html/nd2	52510.html			
15										
16										
17										
18										
19										
20										
21										
00										

(2) コミュニケーションと情報デザイン

	教科書ページ	内 容	知∙技	思・判・表	主
10	44-46	情報のデジタル化(数値)	0		
11	51-53	情報のデジタル化(論理回路)			0
12	47-48,50	情報のデジタル化(コンピュータと四則演算)		0	
13	60-65	情報のデジタル化(コンピュータの構成と動作・性能)		0	
14	49,54–55	情報のデジタル化(文字・音のデジタル化とデータ量)	0		
15	55-59	情報のデジタル化(画像・動画のデジタル化とデータ量)	•	0	
16	66-67	情報のデジタル化(動画のデジタル化と圧縮・エラー訂正)		0	
17	66-72	メディアとコミュニケーション	0		
18		データの取り込み実習	0		0
19	資料5-6,92-95	情報デザイン(情報デザインのプロセスと問題発見)	0	0	
20	96-111	情報デザイン(デザインの要件と設計)		0	0
21	96-111	情報デザイン(試作)	•		
22	96-111	情報デザイン(実装)	•		
23	96-111	情報デザイン(評価と改善)	•	•	

(2)「コミュニケーションと情報デザイン」

- デジタル化
 - 「ビット」とその「パターン数」という、「情報特有の考え方」を身につける
 - 反転授業
 - データを自分で加工してPCに取り込む実習
- コミュニケーション
 - 「情報への接し方」指導を中心に、メールの書き方も
 - _ 「エコーチェンバー」「フィルターバブル」など
- 情報デザイン
 - 「内容」と「相手」を意識して
 - HTML・CSSをテキストエディタとブラウザで
 - グループでの実習

【復習】2進法と場合の数

(bit)	場合の数
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

「一つ上のセル」を2倍することを コピーしていけばよい

例)(L14の場所)・・ =L13 * 2 L14を「コピー」、 L15からL37まで「貼り付け」

これらのことから

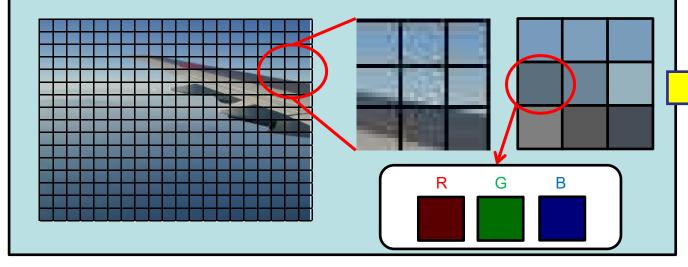
5bitの情報量では、32 通り

のものが区別でき、

512通りのものを区別するには 9 bit

100通りのものを区別するには 7 bit

の情報量が必要であることがわかる



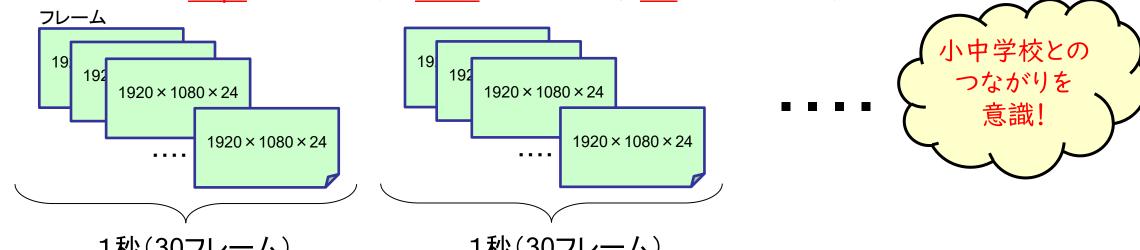
小中学校との つながりを 意識!

画素に分割し、画素 ごとにRGBそれぞれ、 の濃淡を読み取る あらかじめ 決めた段階に、 数値化する 0と1で 表す!

標本化

量子化

120	126	120
155	159	156
189	187	186
90	108	150
110	133	178
123	150	180
127	89	71
127	89	77
127	89	86


符号化

01111000 10011011 10111101	10011111	10011100
	01101100 10000101 10010110	10110010
01111111	01011001 01011001 01011001	01001101

動画のデータ量

「フレームのデータ量(bit)」×「フレームレート(fps)」×「時間(秒)」

例) 1フレームの画素数が、よこ<u>1920</u>ピクセル、たて<u>1080</u>ピクセル、<u>24ビットフルカラー</u>画像からなる、 <u>30fps</u>の無圧縮の動画<u>3分間</u>のデータ量は何GBか?(式のみで良い)

1秒(30フレーム)

1秒(30フレーム)

フレームのデータ量 フレームレート 時間 Byteへ

KB^

MB^

GB^

 $1920 \times 1080 \times 24 \times 30 \times 180 \div 8 \div 1024 \div 1024 \div 1024$ (秒) (fps) (bit)

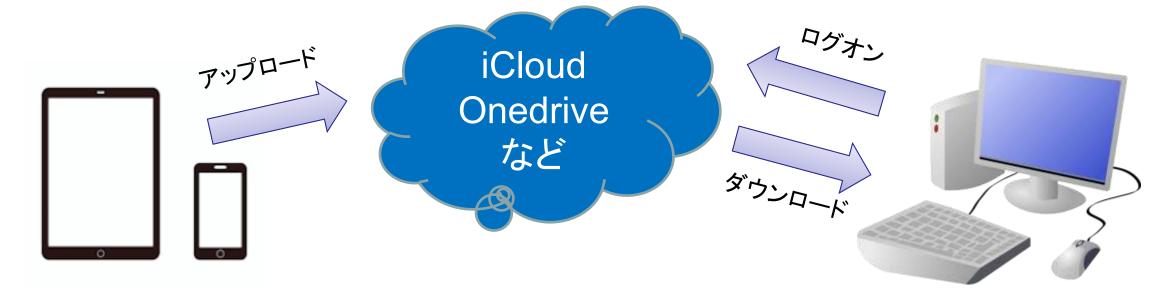
≒ 31.3 GB

メディアリテラシー(p.25)

- 情報を、さまざまな視点で分析・評価し、真偽を正しく判断する能力
 - blogやSNSなどでの情報
 - エコーチェンバー
 - 自分と同じような価値観や考え方のコミュニティにいることで、同じようなニュースや情報ばかりが流れ、それがあたかも真実であるように錯覚してしまう環境
 - ・フィルターバブル
 - ユーザーの好みを学習したアルゴリズムによって、そのユーザーが好む情報ばかりがやってくるような環境
 - マスメディアの情報
 - 発信者の意図、背景
- 表現メディアを活用して効果的な形態で表現する能力

最新の話題も 積極的に

データ量を減らす工夫


画像のファイルサイズはできるだけ小さく!!

- ⇒ 大きくても500KB程度を目安に。
- 1.画素数を減らす
 - ① トリミング: 必要な部分を残して切り取る
 - ② 縮小: 全体的に縮める
- 2.減色: 色の数を減らす(24bit⇒8bit など)
- 3.圧縮: 圧縮形式で保存(JPEG、GIFなど)

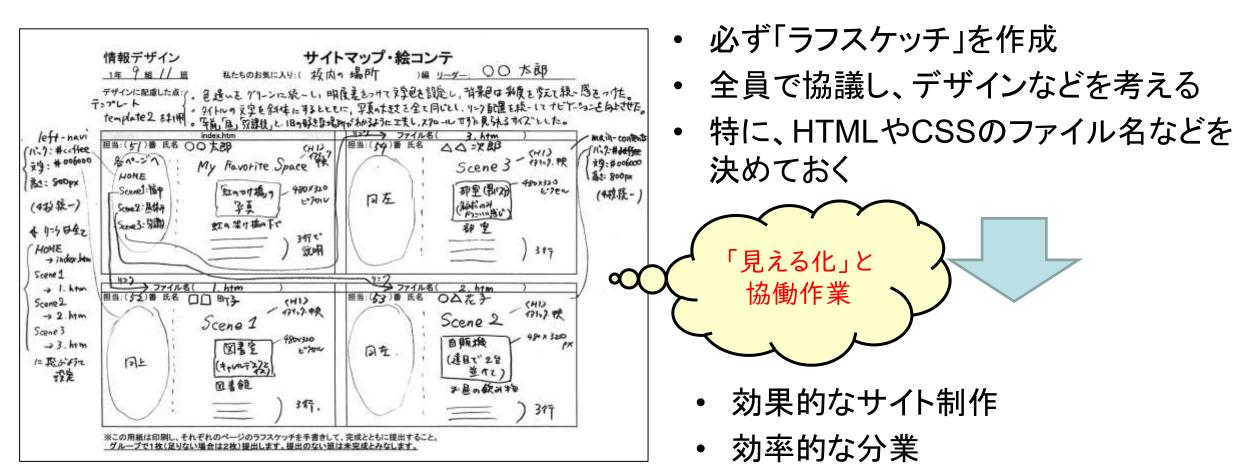
PCに画像を取り込むには(2)

- 外部ストレージ(クラウド)を利用する
 - iCloudに保存してある写真を、PCからiCloudにログオンして引き 出す。
 - iPadやスマホのOnedriveにデータを保存し、PCからOffice365にアクセスして引き出す。

画像取込実習

iPad等でPCの「Tドライブ」に自分が著作者の画像を取り込み、次の条件にあう形に加工する。(盗撮厳禁!)

- 画像の大きさ : <u>640×480 ピクセル以上</u> (たて横どちらが長くても良い)
- データ量: 15KB以下(エクスプローラで「15KB」表示まではOK)
- みた目が「<u>許せる程度のきれいさ」</u>であること
 - 不安な生徒はとなりの人に判断してもらおう。!
- ※必ず<u>編集した画像のファイル名を自分のID名に変更</u>し、「<u>課題提出」ド</u> ライブ内にある所定の場所に提出すること!


要件の定義と設計・試作(p.33)

- 今回のデザインの要件
 - 目標
 - ・ 国高生(自分たち)を肯定的に理解してもらう
 - 対象
 - ・この部屋(PC室)に来る可能性のある方全員 (同級生、先輩、保護者、定時制の生徒、中学生、地域の方など)
 - 使用するメディア
 - Webサイト(トップページおよびリンク先ページ3枚、計4枚)
 - デザイン上の工夫
 - 目的と対象を良く理解し、アクセシビリティ・ユーザビリティにも配慮する。
 - ・ 4人で一つのサイトを作成するので、内容、構成、表現等を工夫する。

Webサイトの設計

(ワークシートを印刷し、手書きで記入)

2024年度1年情報デザイン実習

保存のサンプル

保存サンプル

見本

見本

生徒の作品

1100	1班	2班	<u>3班</u>	4班	5班	<u>6班</u>	_7班	8班	9班	10班
1200	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	<u>8班</u>	<u>9班</u>	10班
1300	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	8班	<u>9班</u>	10班
1400	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	<u>8班</u>	<u>9班</u>	10班
1500	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	8班	<u>9班</u>	10班
1600	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	<u>8班</u>	<u>9班</u>	10班
1700	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	<u>8班</u>	<u>9班</u>	10班
1800	1班	2班	<u>3班</u>	<u>4班</u>	<u>5班</u>	<u>6班</u>	<u>7班</u>	<u>8班</u>	<u>9班</u>	10班

うまく表示されない時はここをクリックして確認してみよう! (PDFが開きます)

評価・改善の視点 ∞

- 「完成」していますか?「教材配布」から、正しく機能しますか?
 - リンクも含め、まずはしっかりと完成させましょう。
- 「目的」にあった内容となっていますか?
 - 知らない方から自分たちを「ポジティブに」理解してもらえそうですか?
- 「情報デザイン」に配慮されていますか?
 - アクセシビリティ(色使い・alt属性・データサイズ等)は適切ですか?
 - ユーザビリティ(写真の大きさやリンクの配置など)は適切ですか?

本日の手順

評価・改善のチャンスを!

クラス作品等の閲覧(2分)

発表班の発表

(奇数・偶数班が組)

- 1.班長が概要説明
- 自分たちのテーマ
- ・閲覧者に伝えたい内容
- ・工夫した点
- -課題 など

2.それぞれのページを 担当者が簡単にコメント

(合計2分)

見学班からのコメント

班長から順に一人ずつ

- •良かった点
- •改善提案

をコメントする

(合計2分)

※この時間帯に、不明な点や質問のやりとりを すると良い

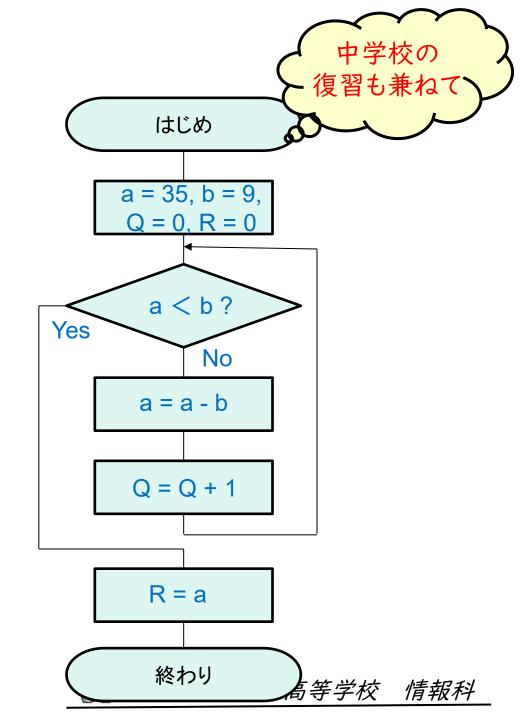
修正作業(終了時刻まで)指摘された箇所の吟味

(3) コンピュータとプログラミング

	教科書ページ	内 容	知∙技	思•判•表	主
24	130-133	コンピュータとプログラミング(アルゴリズムの表現方法)		0	
25	130-133	コンピュータとプログラミング(いろいろなアルゴリズム)	0		0
26	134-139、160-163	コンピュータとプログラミング(言語による表現:制御構造1)			
27	134-139、160-163	コンピュータとプログラミング(言語による表現:制御構造2)			
28	134-139、160-163	コンピュータとプログラミング(言語による表現:制御構造3)			
29	148-149	モデル化とシミュレーション(状態遷移図)	0		
30	150-153	モデル化とシミュレーション(プログラミングと帰納的定義)	0	0	
31	150-153	モデル化とシミュレーション(確定的な数式モデル)	0	0	
32	154-155	モデル化とシミュレーション(確率的な数式モデル)	0		0
33	134–139	プログラミングとシミュレーション(課題制作1:問題の発見)		0	0
34	140-143	プログラミングとシミュレーション(課題制作2:試作と実装)		0	0
35	140-143	プログラミングとシミュレーション(課題制作3:試作と実装)		0	0
36	140-143	プログラミングとシミュレーション(課題制作4:評価改善)	•		

(3)「コンピュータとプログラミング」

- 一人 | 台端末を活用
 - 外部サービスの活用(プログル情報)とAIによる疑問点の解決
- プログラミング独特の考え方
 - 数学との考え方の違いを強調
- 生成AIによるプログラミング作成補助
 - 生成AIにコーディングを任せる
 - 生徒は「上流工程」を体験
- あくまでも「問題解決」
 - グループでの実習
 - 「問題解決」を強く意識 → 発表・評価・改善のフェーズを必ず作る


判断分岐

a=35、b=9 とし、 a÷bの商Qと余りRを求める フローチャートを作ろう!

<ヒント> 35-9=26 26-9=17 17-9= 8(<9) ← 商:3 余り:8

- ・「引かれる数」が入れ替わる
- ・「引いた回数」を覚えておく(→ Q)
- ・大小比較で終了(引けなければ終了)

練習: 38÷7 の商と余りを求める フローチャートを作ろう

プログル情報

- https://high.proguru.jp/
- 「AIに聞いてみる」が利用可能
- 「プログル技術」もあります

フィボナッチ数列の表示(1)。

- 1, 1, 2, 3, 5, 8, 13, 21, 34, •••
- つまり、このようにしたい(トレースが有効)・・

ر کے	
(数学の発想を元に)	

	2つ前	1つ前	和
3番目	1	1	1+1=2
4番目	1	2	1+2=3
5番目	2	3	2+3=5
•••••			
n番目	1つ前	前の和	1つ前と前の和の和

- ・2つ前に1つ前の値を入力
- ・1つ前に前の和の値を入力
- •和を新たに計算する
- 和を表示するを繰り返す

```
mae2=1
mae1=1
wa=mae2+mae1
for i in range(20)
mae2=mae1
mae1=wa
wa=mae2+mae1
print(wa)
```


フィボナッチ数列の表示(2)

- 1, 1, 2, 3, 5, 8, 13, 21, 34, •••
- 配列にすれば、簡単に済む!

```
fib=[1,1]
for i in range(20):
   fib.append(fib[i] + fib[i+1])
   print(fib)
```

プログラミングでの 典型的な方法を **>**

fib.append(「値」)

・・配列 fib の要素の最後に「値」を追加する ※良く使われる手法なので、覚えておく!

33 34

35

37

モデル化とシミュレーション

☆待ち行列のシミュレーション

例4(1)で考えた内容をもとに、数式モデルを作成し、それぞれの数値が自動的に求まるようにしよう。 なお、来院の間隔は、1から最大間隔内での整数乱数で求まるようにし、診察時間も反映できるようにしてみよう。

mxitvl treat 最大間隔: 診察時間: 20 10

順番	間隔	到着時刻	診察始	診察終	待ち時間
order	interval	arrive	start	end	wait
1	_	0	0	10	0
2					
3					
4					
5					
6					
7					
8					
9					
10					

ヒント) 乱数の応用:

0以上1未満の乱数	• • • •	rand()	
O以上 <u>6</u> 未満の乱数	• • • •	rand()*6	
O以上6未満の <mark>整数の</mark> 乱数	• • • •		
<u>1から6まで</u> の整数の乱数			

※例えば、2番目の患者の到着時刻を、「arrive(2)」と呼ぶことにします。他も同様です。
数式の例として、arrive(2) = arrive(1) + interval(2) などが挙げられますから、一般化して
arrive(n+1) = arrive(n) + interval(n+1) などとなります。

これらを参考に、次の式を、n を用いた式で表しましょう。(但し、n=1, 2, 3, ··· とします) ※必要に応じて、max関数、min関数を使って結構です。

 $\max(a,b) \rightarrow a \ b \$ の大きい方を返す関数、 $\min(a,b) \rightarrow a \ b \$ の小さい方を返す関数

```
interval(n+1)=
arrive(n+1) = arrive(n) + interval(n+1)
start(n+1) =
end(n+1) =
wait(n+1) =
```

※【発展】以上の内容を元に、Pythonプログラムを書いてみよう(ヒント:フィボナッチ数列)

```
import random
mxitv=20
treat=10
interval = [0]
arrive = [0]
start = [0]
end = [
wait = [ ]
for i in range(10):
        interval.append(random.randint(1,mxitv))
        . . .
```

実習 乱数で「何か」を作ろう

- 問題を自分たちで発見する所から
- 関数、乱数と、判断分岐または繰り返しの機能を使って、「何か」のプログラムを「グループで最低1つ」作り、問題を解決しよう。
- 楽しいもの、役に立ちそうなもの、など、何でもOKですが、自分たちの解決したい「 問題」を意識して。
- 生成AIを活用して構いません。ただし、作成されたコードを完璧に説明できる必要があります。また「貼り付けて終わり」はダメ! 自分たちで「ひと手間」かけて!
- ・ 意味がわからないものはダメ。誹謗中傷も厳禁!!
- グループ作業です。グループ内はたくさん助け合ってください。ただし、この時間はグループ以外の人と相談するのは禁止!
- グループメンバー全員が、同じプログラムを再生できるように作成しておいてください。データ交換用作業用フォルダーを活用しても結構です。
- 本日が作業最終時間です。

制作のポイント

- 「やりたいこと」を明確にする
 - どのような「問題」を解決したいのかを明確に。
 - 単に「おもしろおかしい」だけものにならないように。
- ・ 生成AIを上手に使いこなす
 - どのような「質問」が効果的かを考えて質問しましょう。
 - 「粘り強く」「細かく」指示を出しましょう。
- ・ 生成AIは「完璧」ではありません
 - 「悪意があるコード」が含まれているかもしれません。
 - 必ず「生成されたもの」をしっかりと把握・理解しましょう。

あくまでも
「問題」ファースト

生成AIは 「道具」として 出来映えの確認も

デモンストレーション(発表)」の予告【4分】

- 1. 目的と背景の説明
 - 自分たちが「何を問題」としてどのように「解決」しようとしたのか
- 2. プログラムの実行と体験
 - 実際にプログラムを実行し、体験してもらう
- 3. プログラムの中身の説明
 - 1行1行ていねいに、どのように動いているのかを説明
- 4. 作成過程の説明
 - 具体的な生成AIへのプロンプトや突き詰め方を説明
 - 生成AIが作成したものをどのようにアレンジしたかを説明

発表当日の進行

評価・改善する チャンスを!

修正作業(終了時刻まで)指摘された箇所の吟味

デモンストレーション

1概要説明

- ・目的と背景
- ・プログラムの実行と 体験
- ・ソースコードの説明 1行1行ていねいに
- ・作成過程の説明 具体的なプロンプト等
 - •課題 など

(合計4分)

見学者のコメント

(一人ずつ)

- •良かった点
- •改善提案

をコメントする

(合計2分)

※この時間帯に、不明な点や質問のやりとりを すると良い

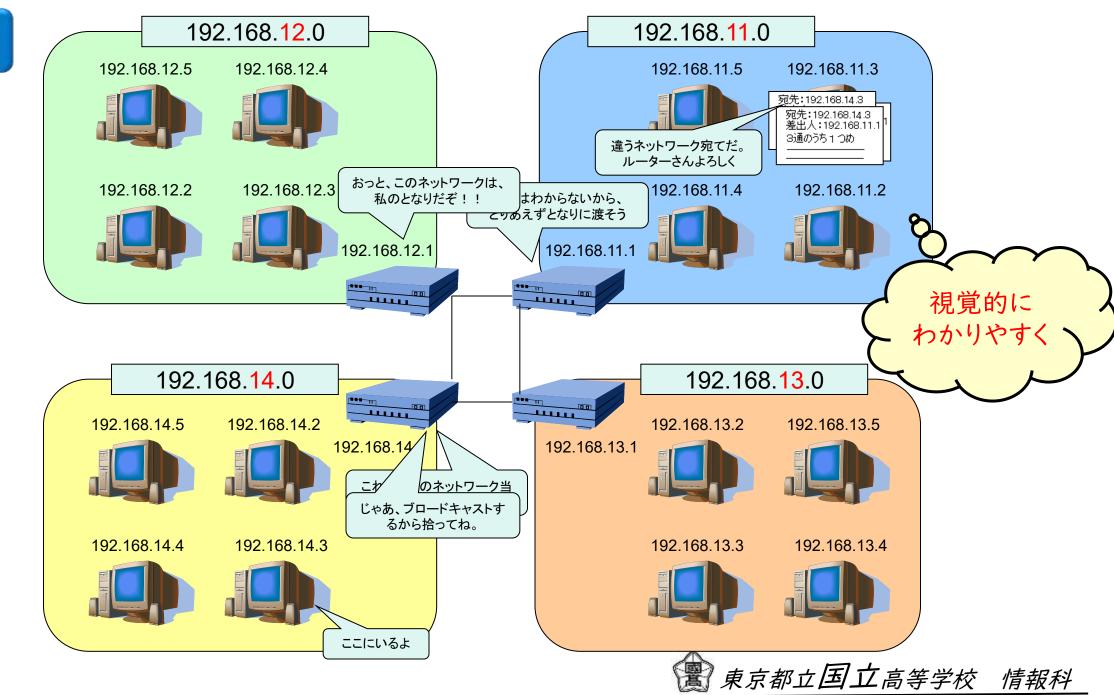
発表の打合せ(5分)

(4)情報通信ネットワークとデータの活用

	教科書ページ	内 容	知∙技	思・判・表	主
37	168-171	情報通信ネットワークのしくみ(ネットワークの構成要素)	0		
38	172-175	情報通信ネットワークのしくみ(インターネットと通信)			0
39	176-181	情報通信ネットワークのしくみ(インターネット上に潜む脅威)		0	
40	176-181	情報通信ネットワークのしくみ(情報の暗号化)			
41	176-181	情報通信ネットワークのしくみ(認証技術)		0	
42	184-185	情報システムとデータベース(情報システムとデータ)	0		
43	186-189	情報システムとデータベース(データベースのしくみ)			0
44	192-195,204-205	情報システムとデータベース(データベースと集計)			
45	204-207	データの活用(数値データの分析1)			
46	204-207	データの活用(数値データの分析2)			
47	196-197	データの活用(テキストデータの分析)			
48	200-203	データの活用と問題解決(課題制作:問題の発見)	0		
49	200-203	データの活用と問題解決(課題制作:試作と実装1)			0
50	200-203	データの活用と問題解決(課題制作:試作と実装2)		0	
51	200-203	データの活用と問題解決(課題制作:評価改善)			

(4)「情報通信ネットワークとデータの活用」

- 普段の身の回りのことに関連付けて
 - 部活やHR、生徒会活動、個人
 - スマートフォンの仕様
 - TCP/IPの階層化
 - パスワードの強度
- 社会の中の出来事を直感で考えて
 - 情報通信ネットワーク
 - ルータ、DNS


演習

- 自分のスマートフォンをネットで検索し、「仕様」を見てみよう
 - 例えば、「iPhone I 6 仕様」などで検索すると良い
 - Wi-Fiについてチェックし、IEEEのどの規格かを確認する
 - 一常に理論上の最高速度でデータをやりとりしたとし、3GBのデータを使い切るのにどのくらいの時間がかかるか計算してみよう。
 - スマートフォンが手元に無い生徒は、「iPhone I5」で調べて良い。

Wi-Fiの規格や 通信速度などを 意識させる

授業スライド

実習2

「TCP/IP」にならって送受信してみよう!!

<準備>

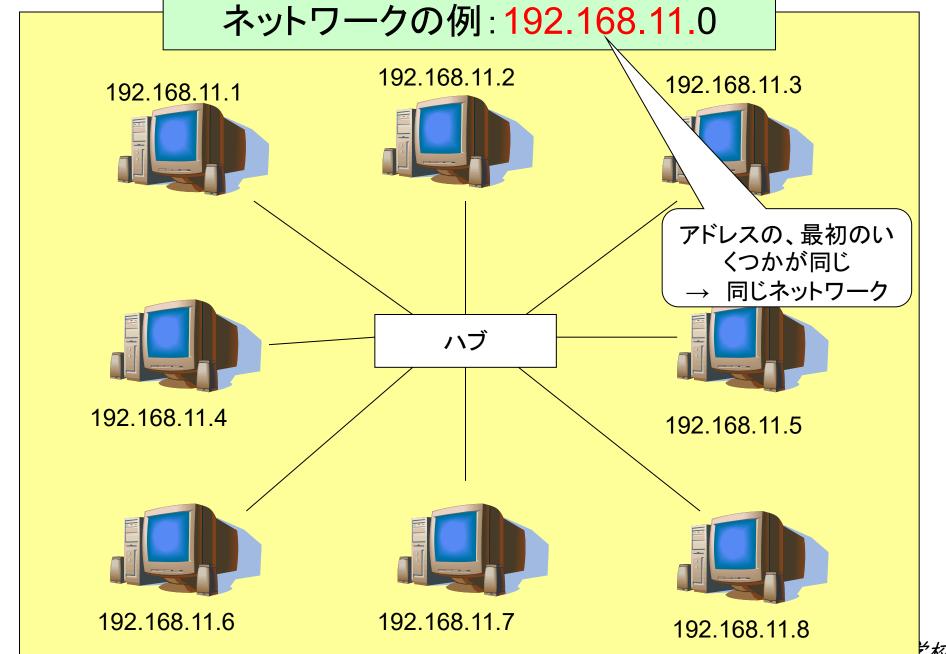
「差出人」の所に自分のアドレス(3カ所全部)を書き入れ、以下のように3つに切り離す。手で切って良い。

^{差出人: O. O. O. O. ○ 宛先: 192.168.14.8 春と秋とどち}

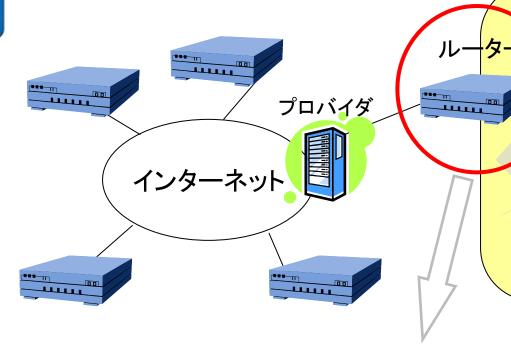
^{差出人: O. O. O. O. O. 宛先: 192.168.14.8 らが好きです}

差出人: 〇. 〇. 〇. 〇 宛先: 192.168.14.8 か?

(厳密に3等分でなくても良いので、自分と宛先のアドレスがわかるように!!)


前回(第41回)の復習

- インターネットは、ネットワークの集まり
- ネットワークごとに、ルータがある
- 「アドレス帳」のようなDNSサーバがある



送ったらネットワーク内の 私あてじゃないから 私あてじゃないから 授業スライド 全員に届いちゃうから、 捨てよう 捨てよう 「からまつ」さんだけひろってね いちょう うぐいす あじさい / [to からまつ] 私あてじゃないから 私あてじゃないから 捨てよう 捨てよう ハブ えのぐ おおわし 私あてじゃないから おっと、俺あてだ。 捨てよう 私あてじゃないから とっておこう。 捨てよう からまつ きりぎりす

電 東京都立国 立高等学校 情報科

圆 木小亚山 上 圆寸 学校 情報科

国立高校:123.*.*.*

(プライベートアドレス)

1号機:192.168.11.1

2号機:192.168.11.2

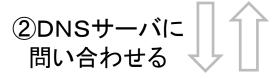
.

番号を「節約」するために、 電話でいう「内線」の ようなアドレスを割り当てる

外部(WAN)へ つなげる所 内部(LAN)へ つなげる所 (ハブとしても使える)

" — — — 学校 情報科

DNS


- IPアドレスとドメイン名を対応させるシステム
- 携帯の「アドレス帳」をイメージすると良い。

⑤閲覧できる

③202.232.75.151だよ

www.kantei.go.jp Webサーバ (202.232.75.151)

課題(7分)

- これら4つの内容で、悪意を持った人は、どのようなメカニズムで妨害や 不正アクセスができると考えられるか。具体的に1つ挙げよ。
- これらの妨害や不正アクセス等に対し、どのような対応策が考えられるか。

 具体的に1つ
挙げよ。
- グループで、最も危険と思われるものを考える。
 - 今回のリーダーは、グループで番号が一番小さい数字の生徒
- ・ 終了後、発表します。
- ※発表は、グループの誰に当たるかわかりません。 しっかりと考えて取り組み、自分が発表するつもりで。

データをまとめる

☆アンケート等で集めたデータを、どのようにしてまとめたら良い?

アンケートのお願い

私たちは東京都立国立高等学校1年生徒です。この度、探究活動の一環として、運動部・文 化部で勉強時間と睡眠時間に何らかの違いがあるかをテーマに調査を行っています。 集めたデータはこの目的のみに活用させていただきますので、ご協力をお願いします。 良くありそうな例示から

あなたが主に活動している部活はどちらですか? ○をつけてください。

運動部

文化部

問1 普段平日の睡眠時間はおおよそ何時間ですか。番号に○をつけてください。

- ① 5時間未満
- ② 5時間~6時間未満
- ③ 6 時間~7 時間未満
- 4 7 時間~8 時間未満
- ⑤ 8 時間以上

問2 普段平日の勉強時間はおおよそ何時間ですか。番号に○をつけてください。

1時間未満

どのようにデータを入力していくか

- 後から「使いやすい」ようにしよう!
 - 検索や並べ替えも簡単にしたい
 - 属性をはっきりさせて、「たての列」を意識する
 - ・1つの「たての列」に1つの属性、1つの属性は1列に
 - ・はじめの列に「通し番号」などをつけておけば、すぐに元に戻せる
 - 入力を簡単にしたい
 - ・表はできるだけ単純化、番号だけで入力できるように
 - 和や平均などの単純計算は自動でおこないたい
 - 変更があっても、スムーズにしたい
 - できれば、金額の変更などは一発で処理したい

不便な例(1)

Aくん	菓子パン	消しゴム	漫画
Bさん	鉛筆	本	
Cくん	ヘッドホン	CD	ジュース
Dさん	雑誌	化粧品	菓子パン

• 「項目(属性)」がはっきりしていない

よくある「例」を示して 活用できるかイメージ

- データをどのように積み重ねていけるのかがわからない
- ・ 後にどのように利用できるのかが想像できない

問題解決とデータの活用

- オープンデータ(csv,xlsx等)を活用して問題発見しその原因を考える
 - 総務省統計局「社会生活基本調査」を活用すると良い
 - お勧めは「調査票A」の「主要統計表」
 - その他のデータも参照可。ただし、必ず自分でデータを加工すること。
 - ・ 既に作成されたグラフ等のコピペは、既に「解釈」されているのでNG(「データ」ではない)。
 - 特に「原因と思われる根拠」や「解決策の道筋」等では、データから自分で作成すること。
 - 出典を必ず正しく明記すること(「探究」で学習しましたね)
- 「問題の原因」「原因と思われる内容」「解決への道筋」については、必ず合計2つ以上の根拠データを示すこと。
- <u>グラフ・統計処理・相関・統計的仮説検定等を必ず用いる</u>こと。
- PowerPointスライド5枚で完結させる。

授業の進め方

- 個人作業で行います。
- 本日を入れて3回(第48~50回)が作業時間です。
- 次回(第49回)に、少しだけ他の生徒と情報交換の時間を取ります。行き詰まっている生徒は参考にすると良いでしょう。
- ・ 第51回の授業で、発表を行い、評価改善を行います。
- iPadで作業してくれてもかまいません。
- 期限を意識して、テキパキと進めましょう。

まとめ

- 情報科は「情報や情報技術を用いた問題解決」
 - 「問題解決」を意識した授業作り
 - 日常生活や「体験的な学び」の仕掛け
- 教科書を元に,対話的・体験的な授業を
 - まずは指導要領・教科書をしっかりと意識
 - 対話・体験から「確かな知識・技能」と「思考力・判断力・表現力」
- 普段から「なぜ?」「どうして?」と問題発見を促して
 - 「問題解決」の切り口が共通テストにもつながっていく
- 「言語力向上」を重視
 - 多くの場面で「言語化」「文章化」を

参考文献等

- 文部科学省「高等学校学習指導要領(平成30年告示)解説 情報編 平成30年7月」開隆堂(2019)
- 黒上晴夫 堀田龍也 村井純「情報 I 」日本文教出版(2022)
- 萩谷昌己「高校情報 I Python」実教出版(2022)
- 萩谷昌己「情報Ⅱ」実教出版(2023)
- 小原格 「情報Ver3.1時代の授業づくり」夏の教育セミナー講演資料(2025)

https://www.summer-seminar.com/